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ABSTRACT

Sherali and Adams [SA90], Lovász and Schrijver [LS91] and, recently,
Lasserre [Las01b] have proposed lift and project methods for construct-
ing hierarchies of successive linear or semidefinite relaxations of a 0 − 1
polytope P ⊆ Rn converging to P in n steps. Lasserre’s approach uses re-
sults about representations of positive polynomials as sums of squares and
the dual theory of moments. We present the three methods in a common
elementary framework and show that the Lasserre construction provides the
tightest relaxations of P . As an application this gives a direct simple proof
for the convergence of the Lasserre’s hierarchy. We describe applications to
the stable set polytope and to the cut polytope.

2000 Mathematics Subject Classification: 05C50, 15A57, 52B12, 90C05,
90C22, 90C27.
Keywords and Phrases: linear relaxation, semidefinite relaxation, lift and
project, cut polytope, stable set polytope.
Note: The research of this paper was carried out under the PNA1.1-project
of CWI.

1 Introduction

Given a set F ⊆ {0, 1}n, we are interested in finding the linear inequality description for the polytope
P := conv(F ). A first (often easy) step is to find a linear programming formulation for P ; that is, to
find a linear system Ax ≤ b for which the polytope

K := {x ∈ Rn | Ax ≤ b}

satisfies K ∩ {0, 1}n = F .
If all vertices of K are integral then K = conv(F ) and we are done. Otherwise we have to find

‘cutting planes’ permitting to strenghten the relaxation K and to cut off its fractional vertices. Such
cutting planes can be found by exploiting the combinatorial structure of the problem at hand; exten-
sive research has been done for finding (partial) linear descriptions for many polyhedra arising from
specific combinatorial optimization problems. Next to that, research has also focused on developing
general purpose methods applying to arbitrary 0-1 problems or, more generally, integer programming
problems.

One of the first such methods, which applies more generally to integral polyhedra, is the method of
Gomory for generating cuts tightening the linear relaxation K. Given a linear inequality

∑
i aixi ≤ α

valid for K where all the coefficients ai are integers, the inequality
∑
i aixi ≤ bαc (known as a
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Gomory-Chvátal cut) is still valid for conv(F ) but may eliminate some part of K. If we apply this
transformation to any inequality

∑
i aixi ≤ α which can be obtained by taking linear combinations of

the inequalities defining K with suitable nonnegative multipliers ensuring that the ai’s are integral,
then we obtain a polytope K ′ satisfying

conv(F ) ⊆ K ′ ⊆ K.

Set K(1) := K ′ and define recursively K(t+1) := (K(t))′. Chvátal [C73] proved that K(t) = conv(F ) for
some t; the smallest t for which this is true is the Chvátal rank of the polytope K. The Chvátal rank
may be very large as it depends in general not only on the dimension n but also on the coefficients
of the inequalities involved. However, when K is assumed to be contained in the cube [0, 1]n then its
Chvátal rank is bounded by O(n2 log n) [ES99]. Even if we can optimize a linear objective function
over K in polynomial time optimizing a linear objective function over the first Chvátal closure K ′ is
a co-NP-hard problem in general [E99].

Another popular method is to try to represent P as the projection of another polytope Q lying
in a higher (but preferably still polynomial) dimensional space. The idea behind being that the
projection of a polytope Q may have more facets than Q itself. Hence it could be that even if P has
an exponential number of facets, such Q exists having only a polynomial number of facets and lying
in a space whose dimension is polynomial in the original dimension of P (such Q is sometimes called
a compact representation of P ). If this is the case then we have a proof that any linear optimization
problem over P can be solved in polynomial time.

Several methods have been developed for constructing projection representations for general 0-1
polyhedra; in particular, by Balas, Ceria and Cornuéjols [BCC93], by Sherali and Adams [SA90], by
Lovász and Schrijver [LS91] and, recently, by Lasserre [Las00, Las01b]. A common feature of these
methods is the construction of a hierarchy K ⊇ K1 ⊇ K2 ⊇ . . . ⊇ P of relaxations of P which finds
the exact convex hull in n steps; that is, Kn = P . These relaxations are linear or semidefinite (in the
case of Lovász-Schrijver and Lasserre). Moreover, under some assumptions over K, one can optimize
in polynomial time a linear objective over an iterate Kt for any fixed t.

The following inclusions are known among these various hierarchies: the Sherali-Adams iterate
is contained in the Lovász-Schrijver iterate which in turn is contained in the Balas-Ceria-Cornuéjols
iterate. The latter inclusion is an easy verification and the former was mentioned in [LS91] as an
application of somewhat complicated algebraic manipulations; we present in Section 4 a simple direct
proof for this inclusion.

The construction of Lasserre is motivated by results about representations of nonnegative polyno-
mials as sums of squares and the dual theory of moments and his proof that the 0− 1 polytope P is
found after n steps relies on a nontrivial result of Curto and Fialkow [CF00] about truncated moment
sequences. In fact, the Sherali-Adams series of relaxations can also be formulated within this frame-
work of moment matrices. The fact of formulating both Lasserre and Sherali-Adams constructions in
a common setting permits a better understanding of how they relate; both constructions apply in fact
to the case when K is a semi-algebraic set contained in the cube [0, 1]n. Moreover, the same argument
can be used for showing that the 0− 1 polytope P is found after n steps in both constructions. This
argument concerns an elementary property of the zeta matrix of the lattice P(V ) of subsets of the set
V = [1, n], presented in Section 3.1. We show in Section 4 that the Lasserre hierarchy is a refinement
of both the Sherali-Adams and the Lovász-Schrijver hierarchies. We give in Section 5 two examples
showing that n steps are sometimes needed for finding P using the Sherali-Adams construction and

2



we illustrate in Section 6 how the various methods apply to the stable set polytope and to the cut
polytope of a graph. Section 7 contains some background information about the moment problem
and the representation of positive polynomials as sums of squares, useful for understanding Lasserre’s
approach. In particular, we show that our presentation of Lasserre’s method in Section 3 (in terms of
moment matrices indexed by the semigroup P(V )) is equivalent to the original presentation of Lasserre
(in terms of moment matrices indexed by the semigroup Zn+).

2 The Lovász-Schrijver hierarchy

Let K be a convex body contained in the cube [0, 1]n and let

P := conv(K ∩ {0, 1}n)

be the 0− 1 polytope to be described. For convenience, define

K̃ := {λ(1, x) | x ∈ K}, (1)

the homogenization of K; K̃ is a cone in Rn+1 (the additional coordinate is indexed by 0) and K =
{x ∈ Rn | (1, x) ∈ K̃}. Let M(K) denote the set of symmetric matrices Y = (yij)ni,j=0 satisfying

yj,j = y0,j for j = 1, . . . , n, (2)

Y ej, Y (e0 − ej) ∈ K̃ for j = 1, . . . , n (3)

and set
N(K) := {x ∈ Rn | (1, x) = Y e0 for some Y ∈M(K)},

where e0, e1, . . . , en denote the standard unit vectors in Rn+1. Then,

P ⊆ N(K) ⊆ K.

The inclusion P ⊆ N(K) follows from the fact that, for x ∈ K ∩{0, 1}n, the matrix Y := (1, x)(1, x)T

belongs to M(K) and the inclusion N(K) ⊆ K from property (3). Define iteratively N1(K) := N(K)
and, for t ≥ 2, N t(K) := N(N t−1(K)). Then,

P ⊆ Nn(K) ⊆ . . . ⊆ N t+1(K) ⊆ N t(K) ⊆ . . . ⊆ N(K) ⊆ K.

Lovász and Schrijver [LS91] show that Nn(K) = P . (Their proof assumes that K is a polytope but
remains valid for any convex body K.)

Stronger relaxations are obtained by adding positive semidefiniteness. Set

M+(K) := {Y ∈M(K) | Y � 0} and N+(K) = {x ∈ Rn | (1, x) = Y e0 for some Y ∈M+(K)}.

Then,
P ⊆ N+(K) ⊆ K;

the inclusion P ⊆ N+(K) following from the fact that, for x ∈ K∩{0, 1}n, the matrix Y := (1, x)(1, x)T

is positive semidefinite and, thus, belongs to M+(K). Define iteratively N1
+(K) := N+(K) and

N t
+(K) := N+(N t−1

+ (K)) for t ≥ 2. Then,

P ⊆ N t
+(K) ⊆ N t(K) for t ≥ 1.
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3 The Sherali-Adams and Lasserre hierarchies

The Sherali-Adams and Lasserre constructions apply to semi-algebraic sets contained in the cube
[0, 1]n. Let

K := {x ∈ [0, 1]n | g`(x) ≥ 0 for ` = 1, . . . ,m} (4)

where g1, . . . , gm are polynomials in x1, . . . , xn and let P := conv(K ∩{0, 1}n) be the 0−1 polytope to
be described. As x2

i = xi (i = 1, . . . , n) for any x ∈ {0, 1}n, we can assume that each variable occurs
in every g` with a degree ≤ 1 and, thus, g`(x) can be written as∑

I⊆V
g`(I)

∏
i∈I

xi.

We use the same symbol g` for denoting the vector in RP(V ) with components g`(I) (I ⊆ V ). We first
describe the two constructions in the common setting of moment matrices. We need some definitions.

Given V := [1, n], P(V ) denotes the collection of all subsets of V and, for 1 ≤ t ≤ n, Pt(V ) denotes
the collection of subsets of cardinality ≤ t. The components of a vector y ∈ RP(V ) are denoted as yI
or y(I); we also set y0 = y∅, yi = y{i} and yij = y{i,j}. Given y ∈ RP(V ), an integer 1 ≤ t ≤ n, and a
subset U ⊆ V , define the matrices

Mt(y) := (y(I ∪ J))|I|,|J |≤t, MU (y) := (y(I ∪ J))I,J⊆U . (5)

Thus, MV (y) = Mn(y); this matrix is known as the moment matrix of y (cf. Section 7.2 for background
information). For x, y ∈ RP(V ), x ∗ y denotes the vector of RP(V ) with entries

x ∗ y(I) :=
∑
K⊆V

xKyI∪K. (6)

One can easily verify the following commutation rule which will be used later in Section 4. For
x, y, z ∈ RP(V ),

x ∗ (y ∗ z) = y ∗ (x ∗ z). (7)

The Sherali-Adams and Lasserre relaxations are both based on the following observation.

Lemma 1. Given x ∈ K ∩{0, 1}n, the vector y ∈ RP(V ) with entries y(I) :=
∏
i∈I xi (I ⊆ V ) satisfies

MV (y) � 0, MV (g` ∗ y) � 0 for ` = 1, . . . ,m. (8)

Proof. Indeed, MV (y) = yyT and MV (g` ∗ y) = g`(x) yyT , since y(I ∪ J) = y(I) · y(J) for all
I, J ⊆ V .

One can relax the condition (8) and require positive semidefiniteness of certain principal subma-
trices of the moment matrices MV (y) and MV (g` ∗ y). Namely, Lasserre requires that

Mt+1(y) � 0, Mt−v`+1(g` ∗ y) � 0 for ` = 1, . . . ,m (9)
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(for an integer t ≥ v`−1, where v` := dw`2 e, w` being the degree of g`) while Sherali and Adams require
that

MW (y) � 0, MU (g` ∗ y) � 0 for ` = 1, . . . ,m and U,W ⊆ V with |U | = t, |W | = min(t + 1, n) (10)

(for an integer t = 1, . . . , n). The corresponding relaxations of P are obtained by projecting the variable
y onto the subspace Rn indexed by the singletons in P(V ). Sherali and Adams and Lasserre show
that P is found after n steps in the two constructions. These two results are a direct consequence
of Corollary 3 below asserting that the cone in RP(V ) consisting of the vectors y satisfying (8) is
generated by 0− 1 vectors.

The Sherali-Adams relaxations turn out to be linear relaxations since the condition (10) can be
reformulated as a linear system in y (cf. Lemma 2 below). We present in Section 3.2 the origi-
nal definition of the Sherali-Adams relaxations given in [SA90] and its equivalence with the above
definition.

3.1 Preliminary results

Let Z denote the square 0− 1 matrix indexed by P(V ) with entry ZI,J = 1 if and only if I ⊆ J . Its
inverse Z−1 has entries

Z−1
I,J = (−1)|J\I| if I ⊆ J, 0 otherwise. (11)

The matrix Z is known as the zeta matrix of the lattice P(V ) and its inverse Z−1 as the Möbius matrix
of P(V ) (cf. [Wi68]). Let ζJ denote the J-th column of Z; it has entries ζJ(I) =

∏
i∈I xi (I ⊆ V ),

setting x := χJ . Given a subset J ⊆ P(V ), let CJ denote the cone generated by the columns ζJ of Z
for J ∈ J . Hence, CJ is a simplicial cone in RP(V ) and

CJ = {y ∈ RP(V ) | Z−1y ≥ 0, (Z−1y)J = 0 ∀J 6∈ J }. (12)

The next lemma is based on ideas from section 3.a in [LS91].

Lemma 2. Let g, y ∈ RP(V ). Then,

(i) MV (g ∗ y) � 0 ⇐⇒ (Z−1y)H · gT ζH ≥ 0 for all H ⊆ V .

(ii) MV (y) � 0 ⇐⇒ Z−1y ≥ 0 ⇐⇒
∑
H⊇I

(−1)|H\I|y(H) ≥ 0 for all I ⊆ V .

Proof. (i) Let u ∈ RP(V ) with entries uH := (Z−1y)H ·gT ζH for H ⊆ V and let Du denote the diagonal
matrix indexed by P(V ) with diagonal entries uH (H ⊆ V ). We show that ZDuZ

T = MV (g ∗ y). For
this note that, for H ⊆ V ,

uH = (Z−1y)H · gT ζH =

∑
R⊇H

(−1)|R\H|yR

 ·
 ∑
K⊆H

gK

 =
∑

K⊆H⊆R
(−1)|R\H|yRgK .

Therefore, given I, J ⊆ V , the (I, J)-th entry of ZDuZ
T is equal to

∑
H

ZIHZJHuH =
∑

H⊇I∪J
uH =

∑
K,R

yRgK

 ∑
I∪J∪K⊆H⊆R

(−1)|R\H|
 =

∑
K

gKyI∪J∪K = g ∗ y(I ∪ J)
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and thus to MV (g ∗ y)IJ , using the fact that
∑
I∪J∪K⊆H⊆R(−1)|R\H| = 1 if R = I ∪ J ∪ K and 0

otherwise. Assertion (i) now follows from the fact that u ≥ 0 is equivalent to W � 0.
The first equivalence in (ii) follows directly from (i) applied to g with all zero components except

g∅ = 1 and the second equivalence follows from the description of Z−1 in (11).

Let g`(x) (` = 1, . . . ,m) be polynomials in which every variable occurs with degree ≤ 1 and set

J := {J ⊆ V | gT` ζJ ≥ 0 for all ` = 1, . . . ,m} = {J ⊆ V | g`(χJ ) ≥ 0 for all ` = 1, . . . ,m}. (13)

In the case J = P(V ), the next result is given in [LS91] and [SA90].

Corollary 3. CJ = {y ∈ RP(V ) |MV (y) � 0 and MV (g` ∗ y) � 0 for all ` = 1, . . . ,m} .

Proof. Let y ∈ RP(V ). By definition, y ∈ CJ if and only if Z−1y ≥ 0 and (Z−1y)J = 0 for J 6∈ J .
This is equivalent to Z−1y ≥ 0 and (Z−1y)J · gT` ζJ ≥ 0 for all ` = 1, . . . ,m and J ⊆ V . Therefore, by
Lemma 2, y ∈ CJ if and only if MV (y) � 0 and MV (g` ∗ y) � 0 for ` = 1, . . . ,m.

We see in Lemma 5 below how positive semidefiniteness of the moment matrices of g ∗ y, when
g(x) belongs to the polynomials xi, 1 − xi (i = 1, . . . , n), can be reformulated in terms of positive
semidefiniteness of the moment matrix of y. This result tells us how to handle the bound inequalities
0 ≤ xi ≤ 1 and will be used in Section 4. The proof uses the following fact.

Lemma 4. Let X be a symmetric matrix with block decomposition X =
(

A B
B B

)
where A,B have

the same order p. Then, X � 0 ⇐⇒ B � 0 and A−B � 0.

Proof. Use the fact that, for x, y ∈ Rp, (x, y)TX(x, y) = xT (A−B)x + (x + y)TB(x + y).

Lemma 5. Let y ∈ RP(V ). Then,

(i) MU (ei ∗ y), MU ((e∅ − ei) ∗ y) � 0 for all U ⊆ V with |U | = t and i = 1, . . . , n ⇐⇒ MW (y) � 0
for all W ⊆ V with |W | = min(n, t + 1).

(ii) Mt(y) � 0 =⇒ Mt−1(ei ∗ y), Mt−1((e∅ − ei) ∗ y) � 0 for all i = 1, . . . , n.

Proof. (i) Let W := U ∪ {i} where |U | = t and i 6∈ U . Then, the matrix MW (y) has the block
decomposition

MW (y) =

(P(U) P(W ) \ P(U)
P(U) A B
P(W ) \ P(U) B B

)
,

MU (ei ∗ y) = B, MU (y) = A and M((e∅ − ei) ∗ y) = A−B. From this follows the ‘only if part’ of (i)
and the ‘if part’ in the case when i 6∈ U . For the ‘if part’ in the case when i ∈ U , note that

MU (y) =
(

A B
B B

)
, MU (ei ∗ y) =

(
B B
B B

)
, MU ((e∅ − ei) ∗ y) =

(
A−B 0

0 0

)
,
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with respect to the partition of P(U) into P(U \ {i}) and its complement and use Lemma 4.
(ii) Set P1 := {I ∈ Pt−1(V ) | i 6∈ I}, P ′1 := {I ∈ Pt−1(V ) | i ∈ I}, and P2 := {I ∪ {i} | I ∈ P1}. Then,
the principal submatrix of Mt(y) indexed by P1 ∪ P ′1 ∪ P2 has the block configuration:


P1 P ′1 P2

P1 A D B
P ′1 D C D
P2 B D B

;

Mt−1(ei ∗ y) =

(P1 P ′1
P1 B D
P ′1 D C

)
, Mt−1(y) =

(P1 P ′1
P1 A D
P ′1 D C

)
, Mt−1((e∅ − ei) ∗ y) =

( P1 P ′1
P1 A−B 0
P ′1 0 0

)
.

Therefore, using Lemma 4, we find that Mt(y) � 0 implies that Mt−1(ei ∗ y),Mt−1((e∅ − ei) ∗ y) � 0.

3.2 The Sherali-Adams hierarchy

Let K be a semi-algebraic set as in (4), where the g`’s are polynomials in which every variable occurs
with degree at most 1 and let P = conv(K ∩ {0, 1}n) be the polytope to be described. Let J be
as in relation (13). Let w` denote the degree of the polynomial g`, v` :=

⌈w`
2

⌉
, w := maxw`, and

v := max v`.
We now introduce the Sherali-Adams relaxations1 as linear relaxations and then observe that they

can be reformulated as the semidefinite programs (10). Let t ∈ {1, . . . , n}. Multiply each inequality
g`(x) ≥ 0 (` = 1, . . . ,m) by each product

f(I, J) :=
∏
i∈I

xi ·
∏
j∈J

(1− xj) (14)

where I, J are disjoint subsets of V = [1, n] such that |I ∪J | = t. Then, we obtain a set of inequalities
that are still valid for P ; add to this set all the inequalities f(I, J) ≥ 0 where I, J are disjoint subsets
with |I ∪ J | = min(t + 1, n). Replace each square x2

i by xi and linearize the product
∏
i∈I xi by a new

variable yI for I ⊆ V (thus setting yi = xi for i ∈ V ); this defines a set Rt(K) in the space RPt+w(V ).
As ∏

i∈I
xi ·

∏
j∈J

(1− xj) =
∑

I⊆H⊆I∪J
(−1)|H\I|

∏
h∈H

xh

the quantity obtained by linearizing g`(x)
∏
i∈I

xi ·
∏
j∈J

(1− xj) reads

(
∑
K⊆V

g`(K)
∏
k∈K

xk) · (
∑

I⊆H⊆I∪J
(−1)|H\I|

∏
h∈H

xh) =
∑

I⊆H⊆I∪J
(−1)|H\I|g` ∗ y(H).

1In their paper [SA90], the authors consider semi-algebraic sets of a special form, but the treatment extends to
arbitrary semi-algebraic sets.
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Therefore, Rt(K) consists of the vectors y ∈ RPt+w(V ) satisfying the inequalities:∑
I⊆H⊆U

(−1)|H\I|g` ∗ y(H) ≥ 0 for all ` = 1, . . . ,m and all I ⊆ U ⊆ V with |U | = t, (15)

∑
I⊆H⊆W

(−1)|H\I|y(H) ≥ 0 for all I ⊆W ⊆ V with |W | = min(t + 1, n). (16)

In fact, the inequalities (15) (resp. (16)) remain valid for Rt(K) for any U with |U | ≤ t (resp. any W
with |W | ≤ min(t + 1, n)); this follows from the fact that f(I, J) = f(I ∪ {k}, J) + f(I, J ∪ {k}) for
any element k ∈ V \ I ∪ J and any disjoint I, J ⊆ V . By Lemma 2, Rt(K) can be reformulated2 as

Rt(K) = {y ∈ RPt+w(V ) | MU (g` ∗ y) � 0 for all U ⊆ V with |U | = t and ` = 1, . . . ,m
MW (y) � 0 for all W ⊆ V with |U | = min(t + 1, n)}. (17)

In view of Corollary 3 we find that
Rn(K) = CJ .

Let St(K) denote the projection of Rt(K)∩{y | y∅ = 1} on the subspace Rn indexed by the singletons.
By the above, we have that

P = Sn(K) ⊆ . . . ⊆ St+1(K) ⊆ St(K) ⊆ . . . ⊆ S1(K).

In general, the set S1(K) is not contained in K; this is due to the fact that S1(K) is convex while K
need not be convex. (As an example, consider K = {x ∈ [0, 1]2 | x1 + x2 − x1x2 ≥ 1} which is the
union of two intervals, K = {x ∈ [0, 1]2 | x1 = 1 or x2 = 1}, while P = {x ∈ [0, 1]2 | x1 + x2 ≥ 1}.) In
the linear case, i.e., when all polynomials g` have degree 1, then K is convex and S1(K) ⊆ K.

Matrix reformulation. Let K denote the linearization of K defined by

K := {y ∈ RPw(V ) | gT` y ≥ 0 for ` = 1, . . . ,m, 0 ≤ yi ≤ y∅ for i = 1, . . . , n}. (18)

Given y ∈ RPt+w(V ), consider the matrix Y whose rows and columns are indexed, respectively, by
Pw(V ) and Pt(V ) and with entries Y (K,H) := y(K ∪H) for K ∈ Pw(V ) and H ∈ Pt(V ). Denote by
eH (H ∈ Pt(V )) the elementary unit vectors in RPt(V ); then Y eH is the column of Y indexed by H.
Then,

y ∈ Rt(K)⇐⇒ Y

 ∑
I⊆H⊆U

(−1)|H\I|eH

 ∈ K for I ⊆ U ⊆ V with |U | = t. (19)

3.3 The Lasserre hierarchy

For t ≥ v − 1, where v = max1≤`≤m v`, define

Pt(K) := {y ∈ RP2t+2(V ) |Mt+1(y) � 0, Mt+1−v`(g` ∗ y) � 0 for ` = 1, . . . ,m} (20)

2Remark that we would obtain the same set Rt(K) if instead of including the relations f(I, J) ≥ 0 for disjoint I, J
with |I ∪ J | = min(t + 1, n), we would include the relations f(I, J)xi ≥ 0, f(I, J)(1 − xi) ≥ 0 for disjoint I, J with
|I ∪ J | = t and i = 1, . . . , n; this follows from Lemma 5.
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and define Qt(K) as the projection of Pt(K) ∩ {y | y∅ = 1} onto Rn. Therefore,

P ⊆ Qn+v−1(K) ⊆ . . . ⊆ Qv(K) ⊆ Qv−1(K).

In the case when K = [0, 1]n (i.e., there is no additionnal polynomial constraint g`(x) ≥ 0), we let
v := 0; the first relaxation Q−1(K) is trivial and can thus be ignored. Lasserre [Las01b] shows that
P = Qn+v−1(K). This result is, in fact, a direct consequence of Corollary 3, since Pn+v−1(K) = CJ .
More strongly, it follows from the fact that the Lasserre hierarchy refines the Sherali-Adams hierarchy.

Proposition 6. For any t = 1, . . . , n, Qt+v−1(K) ⊆ St(K) when v ≥ 1 and Qt(K) ⊆ St(K) when
K = [0, 1]n (i.e., v = 0).

Proof. Suppose that v ≥ 1; we show that Qt+v−1(K) ⊆ St(K). Let y ∈ Pt+v−1(K); that is, y ∈
RP2t+2v(V ) satisfies Mt+v(y) � 0 and Mt+v−v`(g`∗y) � 0 for ` = 1, . . . ,m. We verify that the restriction
of y to Pt+w belongs to Rt(K). Indeed, given U,W ⊆ V with |U | = t and |W | = min(t + 1, n),
MW (y) � 0 since it is a principal submatrix of Mt+v(y) (as v ≥ 1) and MU (g` ∗ y) � 0 since it is a
principal submatrix of Mt+v−v`(g` ∗y). The same argument shows the inclusion Qt(K) ⊆ St(K) when
K = [0, 1]n.

The construction of Lasserre is originally presented in terms of moment matrices indexed by integer
sequences (rather than subsets of V ) and the proof of convergence uses results about moment sequences
and the representation of positive polynomials as sums of squares. We review Lasserre’s approach in
Section 7 and show that it is equivalent to the above presentation.

4 Comparing the Lasserre, Sherali-Adams and Lovász-Schrijver Re-
laxations

We assume here that K is polytope; that is, K is defined by (4) where all the polynomials g` have
degree 1 (thus, v = 1, or v = 0 if K = [0, 1]n). As is well known, the first steps of the Sherali-Adams
and Lovász-Schrijver hierarchies are then identical; that is, S1(K) = N(K). (To see it, compare (3)
and (19).) It follows from results in [LS91] that St(K) ⊆ N t(K); that is, the Sherali-Adams hierarchy
refines the Lovász-Schrijver hierarchy. The above inclusion also follows from Theorem 7 which has a
simple direct proof.

Theorem 7. If K is a polytope, then St(K) ⊆ N(St−1(K)) for all t = 1, . . . , n (setting S0(K) := K).

Proof. Let t ≥ 2 and let (y1, . . . , yn)T ∈ St(K); that is, (y1, . . . , yn)T is the projection of some
y ∈ Rt(K) with y∅ = 1. We show that the matrix Y := M1(y) = (yI∪J)|I|,|J |≤1 belongs to M(St−1(K));
that is, Y ek, Y (e∅ − ek) belong to ˜St−1(K), the homogenization of St−1(K), for all k = 1, . . . , n. As
Y ek (resp. Y (e∅ − ek)) is the projection on RP1(V ) of the vector ek ∗ y (resp. (e∅ − ek) ∗ y), it suffices
to show that ek ∗ y and (e∅ − ek) ∗ y belong to Rt−1(K), i.e., that MW (ek ∗ y), MW ((e∅ − ek) ∗ y),
MU (g` ∗ (ek ∗ y)), MU (g` ∗ [(e∅ − ek) ∗ y]) � 0 for all ` = 1, . . . ,m, U,W ⊆ V with |U | = t − 1,
|W | = t. This follows directly from the assumption that y ∈ Rt(y) together with Lemma 5 and the
commutation rule (7).
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Corollary 8. St(K) ⊆ N t(K) for all t = 1, . . . , n.

Proof. Directly from Theorem 7 using induction on t.

By Proposition 6, for any t = 1, . . . , n, we have the inclusions:

Qt(K) ⊆ St(K) ⊆ N t(K).

In fact, one can show that the Lasserre hierarchy also refines the Lovász-Schrijver hierarchy obtained
using the N+ operator.

Observe that M(K) can be alternatively viewed as the set of matrices Y := M1(y) where y ∈ RP2(V )

for which Y ek, Y (e0 − ek) ∈ K̃, i.e., gT` Y ek, gT` Y (e∅ − ek) ≥ 0 for all ` = 1, . . . ,m and k = 1, . . . , n.
As gT` Y e0 = g` ∗ y(∅), gT` Y ek = g` ∗ y(k), the latter holds if and only if the principal submatrix of
M1(g`∗y) indexed by ∅ and {k} is positive semidefinite. In comparison, membership in Q0(K) requires
only that g` ∗ y(∅) ≥ 0 for all `, while membership in Q1(K) requires that M1(g` ∗ y) � 0 for all `.
Therefore, we have the following inclusions:

Q1(K) ⊆ N+(K) ⊆ Q0(K). (21)

Theorem 9. If K is a polytope, then Qt(K) ⊆ N+(Qt−1(K)) for all t = 1, . . . , n.

Proof. Let (y1, . . . , yn)T ∈ Qt(K); that is, (y1, . . . , yn)T is the projection of some y ∈ Pt(K) with
y∅ = 1. Set Y := M1(y). We show that Y ek, Y (e∅ − ek) ∈ ˜Qt−1(K), the homogenization of Qt−1(K),
for k = 1, . . . , n. As Y ek (resp. Y (e∅− ek)) is the projection on RP1(V ) of ek ∗y (resp. (e∅− ek)∗y), it
suffices to show that ek ∗ y and (e∅− ek) ∗ y belong to Pt−1(K), i.e., that Mt(ek ∗ y), Mt((e∅− ek) ∗ y),
Mt−1(g` ∗ (ek ∗ y)), Mt−1(g` ∗ [(e∅ − ek) ∗ y]) � 0 for all ` = 1, . . . ,m. This follows directly from the
assumption that y ∈ Pt(K) together with Lemma 5 and (7).

Corollary 10. If K is a polytope, then Qt(K) ⊆ N t
+(K) for all t = 1, . . . , n.

Proof. Directly from Theorem 9 and (21) using induction on t.

An algorithmic comparison. Summarizing, we have:

Qt(K) ⊆ St(K) ∩N t
+(K)

for any t = 1, . . . , n. Therefore, the Lasserre set Qt(K) provides the sharpest relaxation of P . From an
algorithmic point of view, it is however less well behaved than the Sherali-Adams and Lovász-Schrijver
relaxations.

Given a convex body B ⊆ Rn, the separation problem for B is the problem of determining whether
a given vector y ∈ Rn belongs to B and, if not, of finding a hyperplane separating y from B; the weak
separation problem is the analogue problem where one allows for numerical errors. An important
consequence of the ellipsoid method is that, if one can solve the weak separation problem for B in
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polynomial time, then one can optimize any linear objective function over B in polynomial time
(with an arbitrary precision) and vice versa (assuming some technical information about B like the
knowledge of a ball contained in B and of a ball containing B); see [GLS88] for details.

If one can solve the weak separation problem for K in polynomial time, then the same holds for
M(K) and M+(K) and, thus, for the projections N(K) and N+(K). Therefore, one can optimize a
linear objective function in polynomial time over the relaxations N t(K), N t

+(K), St(K) for any fixed
t; this is observed in [LS91] for the LS sets and the same argument works for the SA sets in view of
the matrix reformulation of the SA method. The assumption made over K is trivially satisfied if m is
polynomial in n but it may sometimes be satisfied even if m is exponential in n. On the other hand,
in order to claim that one can optimize over Qt(K) in polynomial time, one needs to assume that m
is polynomial in n, since the system defining Qt(K) involves m LMI’s associated to the inequalities of
the linear system defining K.

5 The rank of the Sherali-Adams Procedure

We present here two examples of a polytope K ⊆ [0, 1]n for which n iterations of the Sherali-Adams
procedure are needed for finding the integer polytope P = conv(K ∩ {0, 1}n).

Example 1. Let

K := {x ∈ [0, 1]n |
∑
r∈R

(1− xr) +
∑

r∈V \R
xr ≥

1
2

for all R ⊆ [1, n]}; (22)

then P = ∅. We show in Proposition 11 below that Sn−1(K) 6= ∅, which implies that P 6= Sn−1(K).
The polytope K has been used earlier to show that n iterations are needed for the following procedures:
taking Chvátal cuts [CCH89], the N+ operator [GT00], the N+ operator combined with taking Chvátal
cuts [CD01], and the N+ operator combined with taking Gomory mixed integer cuts (equivalent to
disjunctive cuts) [CL01]. The following (easy to verify) identities will be used in the proof:

∑
K⊆A

(−1)|K|

2|K|
=

1
2|A|

,
∑
K⊆A

|K|(−1)|K|

2|K|
= − |A|

2|A|
(23)

for any set A. (For the second one, use the fact that k
(n
k

)
= n

(n−1
k−1

)
.)

Proposition 11. Let y ∈ RP(V ) with entries yI := 1
2|I|

(I ⊆ V ). Then, y ∈ Rn−1(K) where K is
defined by (22).

Proof. Let vR ∈ RP(V ) be the vector of coefficients of an inequality defining K, with all components
zero except vR(∅) = −1

2 + |R|, vR(r) = −1 if r ∈ R, vR(r) = 1 if r ∈ V \R, where R is a given subset
of V . Then, for H ⊆ V ,

vR ∗ y(H) = (|R| − 1
2)y(H)−∑r∈R y(H ∪ {r}) +

∑
r∈V \R y(H ∪ {r})

= 1
2|H|

(|R| − 1
2 + |H \R| − |R ∩H|) + 1

2|H|+1 (|V \ (H ∪R)| − |R \H|)
= 1

2|H|+1 (n− 1 + |H| − 2|R ∩H|).
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Given a subset U ⊆ V with |U | = n− 1 and I ⊆ U , we have:

ϕ :=
∑

I⊆H⊆U
(−1)|H\I|(vR ∗ y)(H) =

n− 1
2|I|+1

∑
K⊆U\I

(−1)|K|

2|K|

+ 1
2|I|+1

∑
K⊆U\I

(−1)|K|

2|K|
(|I|+ |K|) − 1

2|I|+1

∑
K⊆U\I

(−1)|K|

2|K|
(|R ∩ I|+ |R ∩K|).

Using (23), one can verify that the second term in the above expression of ϕ is equal to 1
2n (2|I|−n+1)

while the third term is equal to 1
2n−1 (2|R ∩ I| − |R ∩ U |). Therefore,

ϕ =
1

2n−1
(|I|+ |R ∩ U | − 2|R ∩ I|) ≥ 0

since I ⊆ U . By Lemma 2 (ii), this shows that MU (vR ∗ y) � 0.
Finally, MV (y) � 0, since

∑
I⊆H(−1)|H\I|yH = 1

2n ≥ 0.

Example 2. Consider the polytope

K := {x ∈ [0, 1]n |
n∑
i=1

xi ≥
1
2
}, (24)

then P = {x ∈ [0, 1]n | ∑n
i=1 xi ≥ 1}. This example was considered by Cook and Dash [CD01] as an

example where the Lovász-Schrijver rank is n. The next result shows that the Sherali-Adams rank is
also equal to n.

Proposition 12. Let y ∈ P(V ) with zero entries except y∅ := 1 and yi := 1
n+1 (i ∈ V ). Then,

y ∈ Rn−1(K) where K is defined by (24). Therefore, P ⊂ Sn−1(K).

Proof. One can easily verify (using Lemma 2 (ii)) that MV (y) � 0 and MU (g ∗ y) � 0 for U ⊆ V
with |U | = n− 1, where g(x) is the polynomial −1

2 +
∑n
i=1 xi.

It would be interesting to determine the Lasserre rank of the polytope K in the above two examples.
In the second example, when K is defined by (24), we verified that the Lasserre rank is equal to n
when n = 2; indeed, the minimum value of x1 + x2 for x ∈ Q1(K) is equal to 25

26 < 1. It is not clear
how to construct a point x ∈ Qn−1(K) with

∑
i xi < 1 for general n ≥ 2.

On the other hand, when K is given by (22), we verified that the Lasserre rank of K is equal to
1 when n = 2. Again it would be interesting to see what is the exact rank for higher values of n (we
believe that n− 1 is the correct value).

6 Two Applications

We describe here how the various lift and project methods apply to two concrete examples, namely,
to the stable set polytope and to the cut polytope of a graph. They are the two most extensively
studied examples with respect to this class of methods; the original paper by Lovász and Schrijver
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[LS91] studies the stable set problem while the paper [La00] studies the case of max-cut. Moreover,
these two examples have been the objects of milestone results in the field of semidefinite optimization.

Indeed, the idea of constructing semidefinite relaxations for a combinatorial problem goes back
to the seminal work of Lovász [Lo79] who introduced the semidefinite bound ϑ(G) for the stability
number of a graph G, obtained by optimizing over the semidefinite relaxation TH(G) of the stable
set polytope ST(G) of G. An important result is that TH(G) = ST(G) precisely when G is a perfect
graph, in which case one can solve the maximum stable set problem in polynomial time (with an
arbitrary precision) using semidefinite programming; this is still the only polynomial time algorithm
known up to today (cf [GLS88]).

This idea of approximating combinatorial problems using semidefinite relaxations was used later
again successfully by Goemans and Williamson [GW95] who, using a basic semidefinite relaxation
of the cut polytope, could prove a good approximation algorithm for the max-cut problem. Since
then, semidefinite relaxations have been widely used (in conjonction with clever rounding schemes)
for constructing good approximation algorithms for a large number of combinatorial problems. It
is therefore of interest to construct new stronger semidefinite relaxations for the stable set and cut
problems, as they could potentially be used for designing better approximation algorithms.

6.1 Application to the stable set polytope

Given a graph G = (V = [1, n], E), let ST(G) denote the stable set polytope of G, let

FR(G) := {x ∈ Rn+ | xi + xj ≤ 1 ∀ij ∈ E}

be its basic linear relaxation defined by nonnegativity and the edge inequalities, and let

TH(G) := {x ∈ Rn | (1 x) = Y e0 for some positive semidefinite matrix Y = (Yij)ni,j=0

satisfying Yii = Y0i (i ∈ V ), Yij = 0 (ij ∈ E)} (25)

be the basic semidefinite relaxation of ST(G). Let us compare how the various lift and project methods
apply to the pair P := ST(G), K := FR(G).

Define the N-rank (resp. N+-rank) of FR(G) as the smallest integer t for which N t(FR(G)) =
ST(G) (resp. N t

+(FR(G)) = ST(G)); define similarly the SA-rank and the Lasserre rank of FR(G).
The relaxations N(FR(G)) and N+(FR(G)) are studied in detail in [LS91]. In particular, the

following results are shown there. The polytope N(FR(G)) is defined by the nonnegativity and edge
constraints together with the odd hole inequalities:

∑
i∈V (C) xi ≤ |C|−1

2 for C odd hole in G. If G has
n nodes and stability number α(G), then its N -rank t satisfies:

n

α(G)
− 2 ≤ t ≤ n− α(G) − 1; (26)

the N -rank t of an inequality aTx ≤ β valid for ST(G) (with integer coefficients and distinct from the
nonnegativity constraints) satisfies:

1
β

(
∑
i∈V

ai − 2β) ≤ t ≤
∑
i∈V

ai − 2β. (27)

The lower bounds follow from the fact that
1

t + 2
(1, . . . , 1)T ∈ N t(FR(G)) (28)
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for any t ≥ 0. The N+ operator yields a much stronger relaxation, as clique inequalities, odd wheel
and odd antihole inequalities are valid for N+(FR(G)) (while the N -rank of a clique inequality based
on a clique of size k is k − 2). Thus, perfect graphs have N+-rank 1. Moreover,

N+(FR(G)) ⊆ TH(G)

for any graph G and the N+ rank t of G satisfies:

t ≤ α(G). (29)

The Sherali-Adams hierarchy does not seem to yield a significant improvement with respect to
the sequence N t(FR(G)). Indeed, the vector 1

t+2(1, . . . , 1)T ∈ Rn considered in (28) belongs also to
St(FR(G)). (Because the vector y ∈ RPt+1(V ) defined by y∅ := 1, yI := 1

t+2 if |I| = 1, and yI := 0 if
|I| ≥ 2 belongs to Rt(FR(G)).) Therefore, the lower bounds from (26) and (27) remain valid for the
SA-rank of FR(G).

On the other hand, the Lasserre hierarchy does improve on the sequence N t
+(FR(G)) as we now see.

We begin with giving a more compact formulation for the relaxation Qt(FR(G)). For an edge ab ∈ E,
let gab(x) := 1 − xa − xb be the polynomial corresponding to the edge inequality xa + xb ≤ 1. We
show that the positive semidefinite constraint Mt(gab ∗ y) � 0 can be replaced by the linear equation:
yab = 0.

Lemma 13. Let t ≥ 1 and y ∈ RP2t+2(V ). The following assertions are equivalent.

(i) y ∈ Pt(FR(G))

(ii) Mt+1(y) � 0 and yab = 0 for any edge ab ∈ E.

(iii) Mt+1(y) � 0 and yI = 0 for any I ∈ P2t+2(V ) which is not stable.

Proof. Note first that the condition Mt+1(y) � 0 implies that yI ≥ 0 for all I ∈ Pt+1(V ).
(i) =⇒ (ii) The (a, a)-th entry of Mt(gab ∗ y) is equal to gab ∗ y(a) = −yab and is nonnegative, which
implies that yab = 0.
(ii) =⇒ (iii) Suppose I contains the edge ab. If |I| ≤ t + 1, then the (ab, I)-th entry of Mt+1(y) is
equal to 0 since the (ab, ab)-th entry is 0, which implies that yI = 0. Otherwise, write I = I1 ∪ I2

where I1, I2 ∈ Pt+1(V ) with {a, b} ⊆ I1; by the above the (I1, I1)-th entry of Mt+1(y) is 0 and, thus,
its (I1, I2)-th entry too is 0, implying yI = 0.
(iii) =⇒ (i) We show that Mt(gab ∗ y) � 0. Set P0 := Pt(V \ {a, b}) and Pc := {I ∪ {c} | I ∈
P0} for c = a or b. Then, the principal submatrix X of Mt(y) indexed by P0 ∪ Pa ∪ Pb has

the form:


P0 Pa Pb

P0 C A B
Pa A A 0
Pb B 0 B

 and X � 0 implies that C − A − B � 0. (To see it, note that

(−x, x, x)TX(−x, x, x) = xT (C − A − B)x for all x ∈ Rp, p := |P0|.) The result now follows since,
with respect to the partition of Pt(V ) into P0 and its complement P ′0, the matrix Mt(gab ∗ y) has the
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form:

( P0 P ′0
P0 C −A−B 0
P ′0 0 0

)
.

In view of Corollary 10 and (29), it follows that Qα(G)(FR(G)) = ST(G). In fact, the Lasserre
hierarchy already finds ST(G) at step α(G)− 1.

Proposition 14. ST(G) = Qα(G)−1(FR(G)) for a graph G with stability number α(G) ≥ 2.

Proof. We show that Qα−1(FR(G)) ⊆ Qn(FR(G)), where α := α(G). Let y ∈ Pα−1(FR(G)); define
z ∈ RP(V ) by zI := yI if |I| ≤ 2α and zI := 0 otherwise. Thus, zab = 0 for all edges ab ∈ E. By
Lemma 13, it suffices to verify that MV (z) � 0, which holds since, with respect to the partition of

P(V ) into Pα(V ) and its complement, MV (z) has the form
(

Mα(y) 0
0 0

)
.

Let G be the line graph of Kn with n odd; then, ST(G) is the matching polytope of Kn. Stephen
and Tunçel [ST99] show that α(G) = n−1

2 iterations of the N+ operator are needed for finding ST(G).
Thus, this gives an instance of a graph G for which ST(G) = Qα−1(FR(G)) is strictly contained in
Nα−1

+ (FR(G)).

We conclude with a comparison with the basic semidefinite relaxation TH(G). By the definition
(25), TH(G) can be seen as the projection on Rn of the set of vectors y ∈ RP2(V ) satisfying y∅ = 1 and

M1(y) � 0, yab = 0 (ab ∈ E).

Therefore, we have the following chain of inclusions:

Q1(FR(G)) ⊆ N+(FR(G)) ⊆ TH(G) ⊆ Q0(FR(G))

and, in view of Lemma 13, the Lasserre relaxations Qt(FR(G)) (t ≥ 1) are natural refinements of the
basic SDP relaxation TH(G).

6.2 Application to the max-cut problem

Given a graph G = (V = [1, n], E), the max-cut problem asks for a partition (S, V \ S) minimizing
the total cardinality (or weight) of the edges ij cut by the partition (i.e., such that |S ∩ {i, j}| = 1).
Hence it can be formulated as an unconstrained quadratic ±1-problem:

max(xTAx | x ∈ {±1}n), (30)

where A is a (suitably defined) symmetric matrix, but the treatment below remains valid for A
arbitrary.

Since we are now working with ±1 variables in place of 0 − 1 variables, we should modify some
definitions. In particular, when defining the moment matrices in (5), one should consider the semigroup
P(V ) with the symmetric difference ∆ as semigroup operation in place of the union; thus the (I, J)-th
entry of the moment matrix is y(I∆J). Moreover, (6) becomes: x∗y(I) =

∑
K xIyI∆J , the zeta-matrix

Z has entry ZIJ = (−1)|I∆J |, the inequalities (15) defining Rt(K) become:
∑
H⊆U

(−1)|H∩I|g`∗y(H) ≥ 0.
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There are two possible strategies in order to formulate relaxations for the problem (30).

First strategy. The first possible strategy is to formulate (30) as a linear problem

max(〈A,X〉 | X ∈ CUT(Kn))

over the cut polytope
CUT(Kn) := conv(xxT | x ∈ {±1}n)

(which is in fact a
(n

2

)
-dimensional polytope) and to apply the various lift and project methods to some

linear programming formulation of CUT(Kn). As linear programming formulation for CUT(Kn), one
can take the metric polytope MET(Kn) consisting of the symmetric matrices X with diagonal entries
1 satisfying the triangle inequalities:

Xij + Xik + Xjk ≥ −1, Xij −Xik −Xjk ≥ −1

for all distinct i, j, k ∈ V .
One can also consider linear relaxations of the cut polytope CUT(G) of an arbitrary graph G. Given

a graph G = (V,E), let CUT(G) and MET(G) denote the projections of CUT(Kn) and MET(Kn),
respectively, on the subspace RE indexed by the edge set of G. Then, CUT(G) ⊆ MET(G) with
equality if and only if G has no K5-minor [BM86].

When applying the Lovász-Schrijver construction to K := MET(G), one finds the relaxation
N(MET(G)) of CUT(G). Another possibility is to first apply the LS construction to K := MET(Kn)
and then project back on the edge space RE, thus yielding the relaxation N(G) := πE(N(MET(Kn)))
of CUT(G) (with πE denoting the projection from the space indexed by the edge set of Kn to the
space indexed by the edge set of G). One has:

N(G) ⊆ N(MET(G))

but it is not known whether equality holds in general.

The following results about the relaxations N(G) and N(MET(G)) are shown in [La00]. Equality:
N t(MET(G)) = CUT(G) holds if G has t edges whose contraction produces a graph with no K5-
minor. In particular, Nn−α(G)−3(G) = CUT(G); moreover, Nn−α(G)−3(MET(G)) = CUT(G) if G has
a maximum stable set whose complement induces a graph with at most three connected components.
In particular, Nn−4(Kn) = CUT(Kn) for n ≥ 4. The value n− 4 is known to be the correct value for
the N -rank of MET(Kn) when n ≤ 7 and is conjectured to be the correct value for any n. Although
the inclusion N+(MET(G)) ⊆ N(MET(G)) is strict in general (e.g., for G = Kn and n ≥ 6), no
example is known of a graph for which the number of iterations needed for finding CUT(G) is smaller
when using the N+ operator instead of the N operator.

Second strategy. Another possible strategy is to apply the various constructions to the cube K :=
Cn = [−1, 1]n and to take projections on the space REn indexed by the set En of pairs ij of points
of V (instead of projections on the space RV indexed by the singletons). Thus we now consider the
Sherali-Adams set Rt(Cn) and the Lasserre set Pt(Cn) and their respective projections Ŝt(Cn) and
Q̂t(Cn) on REn. (The ‘hat’ symbol is meant to remind that the projection is taken over the set of
pairs.) As no polynomial constraint is present in the definition of K, we have that

Ŝn−1(Cn) = Q̂n−1(Cn) = CUT(Kn).
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By the definition, the relaxation Ŝt(Cn) consists of the vectors y ∈ REn whose restriction on a subset
of t + 1 points belongs to CUT(Kt+1); in other words, Ŝt(Cn) is the polytope in REn determined by
all the valid inequalities for CUT(Kn) on at most t + 1 points.

For t ≥ 0, the t-th Lasserre relaxation of the max-cut problem reads:

max(
∑
i,j∈V

aijyij |Mt+1(y) = (y(I∆J))I,J∈Pt+1(V ) � 0, y∅ = 1). (31)

Let M̃t+1(y) denote the principal submatrix of Mt+1(y) whose rows and columns are indexed by the
sets I ∈ Pt+1(V ) having even (resp. odd) cardinality if t + 1 is even (resp. odd). The program (31)
can be reformulated as the smaller program:

max(
∑
i,j∈V

aijyij | M̃t+1(y) � 0, y∅ = 1). (32)

Indeed, Mt+1(y) =
(

A C
CT B

)
, where A is the submatrix of Mt+1(y) indexed by all even sets and B

the submatrix indexed by all odd sets. As the objective function does not involve any variable yI with
|I| odd, we can assume that C = 0. Moreover, A is a submatrix of B if t + 1 odd and vice-versa if
t + 1 is even. (To see it, use the fact that I∆J = (I∆{1})∆(J∆{1}).)

Therefore, we find again the following facts observed by Lasserre [Las00]. For t = 0, the feasible
set of the program (32) is the basic semidefinite relaxation En consisting of the semidefinite matrices of
order n with diagonal entries 1. For t = 1, the feasible set of the program (32) is the set F ′n consisting
of the positive semidefinite matrices Z indexed by En ∪ {∅} satisfying

Zij,ik = Z∅,jk and Zij,rs = Zir,js = Zis,jr

for all distinct i, j, k, r, s ∈ V . If we remove in the definition of F ′n the condition Zij,rs = Zir,js = Zis,jr,
we obtain the larger matrix set Fn underlying the relaxation (SDP3) defined by Anjos and Wolkowicz
[AW01]. Setting

Fn := {x ∈ REn | (1 x) = Ze0 for some Z ∈ Fn}
we have:

CUT(Kn) ⊆ Q̂1(Cn) ⊆ Fn ⊆ En ∩MET(Kn).

The right most inclusion is shown in [AW01]; both left and right most inclusions are strict for n = 5.
It is shown in [La00] that M+(MET(Kn)) ⊆ Fn (M+ being the Lovász-Schrijver matrix operator

introduced in Section 2) and M ′
+(MET(Kn)) ⊆ F ′n (M ′

+ being a strenghtening of M+ considered in
[La00]). Therefore, applying the operator M ′

+ yields a relaxation N ′+(MET(Kn)) which is contained
in the Lasserre relaxation Q̂1(Cn). The inclusion N ′+(MET(Kn)) ⊆ Q̂1(Cn) is strict for n = 5, since
N ′+(MET(K5)) = CUT(K5).

7 Lasserre’s Approach Revisited

In this section we revisit the hierarchy of relaxations of Lasserre introduced in Section 3 from the
algebraic point of view of representing nonnegative polynomials as sums of squares and the dual theory
of moments. This approach applies to general (not necessarily 0 − 1) polynomial programming. The

17



idea of approximating polynomial programming problems using sums of squares of polynomials has
been used in several other works, in particular, by Shor [Sh87, Sh98], Nesterov [Ne00], Parillo [Pa00],
De Klerk and Pasechnik [KP01]. We begin with introducing the main ideas on the unconstrained
problem of minimizing a polynomial function over Rn, considered in [Las01a].

7.1 A gentle introduction

Suppose we want to solve the problem:

p∗ := min g(x) subject to x ∈ Rn, (33)

where g(x) is a polynomial of even degree 2d which can be assumed to satisfy g(0) = 0. It is easy to
see that (33) can be reformulated as

p∗ = min
µ

∫
g(x)dµ(x) (34)

where the minimum is taken over all probability measures µ on Rn. Write the polynomial g(x) as sum
of monomials: g(x) =

∑
α∈S2d

gαxα, where xα := xα1
1 . . . xαnn and, for an integer m, Sm denotes the set

of α ∈ Zn+ with |α| := ∑n
i=1 αi ≤ m. Then,

∫
g(x)dµ(x) =

∑
α gα

∫
xαdµ(x). If we define a sequence

y = (yα)α∈S2d
to be a moment sequence when

yα =
∫

xαdµ(x) (35)

(for all α ∈ S2d) for some nonnegative measure µ on Rn, then (34) can be rewritten as

p∗ = min
∑
α

gαyα s.t. y is a moment sequence and y0 = 1. (36)

Lower bounds for p∗ can be obtained by relaxing the condition that y be a moment sequence. A
necessary condition for y to be a moment sequence is that its moment matrix MZ

d (y) := (yα+β)α,β∈Sd
be positive semidefinite. Write

MZ
d (y) =

∑
γ∈S2d

yγBγ (37)

where Bγ :=
∑
α,β∈Sd|α+β=γ Eα,β , with Eα,β denoting the elementary matrices (with all zero entries

except ones at the positions (α, β) and (β, α)). Therefore, one has the following lower bound for p∗:

p∗ ≥ min gT y = min gT y

s.t. MZ
d (y) � 0 s.t. B0 +

∑
γ∈S2d\{0}

Bγyγ � 0

y0 = 1

(38)

One can also proceed in the following dual manner for computing p∗. Rewrite (33) as

p∗ = max λ subject to g(x)− λ ≥ 0 ∀x ∈ Rn. (39)

Lower bounds for p∗ are now obtained by considering sufficient conditions for g(x)−λ to be nonnegative
over Rn. An obvious sufficient condition being that g(x) − λ be a sum of squares (SOS, for short).
Testing whether a polynomial p(x) is a SOS amounts to deciding feasibility of a semidefinite program
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(see, e.g., [Ne00],[Pa00]). Say, p(x) has degree 2d and let z := (xα)α∈Sd be the vector consisting of all
monomials of degree ≤ d. Then, one can easily verify that p(x) is a SOS if and only if p(x) = zTXz
(identical polynomials) for some positive semidefinite matrix X. As

zTXz =
∑

α,β∈Sd
Xα,βx

α+β =
∑
γ∈S2d

xγ

 ∑
α,β∈Sd
α+β=γ

Xα,β

 =
∑
γ∈S2d

xγ〈Bγ ,X〉,

it follows that p(x) is a SOS if and only if the following SDP program:

X � 0, 〈Bγ ,X〉 = pγ (γ ∈ S2d) (40)

is feasible, where X is of order
(n+d
d

)
and with

(n+2d
2d

)
equations (thus, polynomially solvable for fixed

n or d). Based on this we can formulate the following lower bound for p∗:

p∗ ≥ max λ = max −〈B0,X〉
s.t. g(x) − λ is SOS s.t. 〈Bγ ,X〉 = gγ (γ ∈ S2d \ {0}).

(41)

The SDP programs (38) and (41) are, in fact, dual of each other and there is no duality gap if (41) is
feasible.

The lower bound from (41) is equal to p∗ if g(x) − p∗ is a SOS; this holds for n = 1 but not in
general if n ≥ 2. In general one can estimate p∗ asymptotically by a sequence of SDP’s analogue to
(41) if one assumes that an upper bound R is known a priori on the norm of a global minimizer x of
g(x), in which case (33) is equal to

min g(x) subject to R−
n∑
i=1

x2
i ≥ 0.

Using a result of Putinar (cf. Theorem 15 below), it follows that, for any ε > 0, g(x) − p∗ + ε can
be decomposed as p(x) + q(x)

(
R−∑i x

2
i

)
for some polynomials p(x) and q(x) that are SOS. Testing

for the existence of such decomposition can be expressed as a SDP program analogue to (41). Details
are given in Section 7.3 where the general problem of minimizing a polynomial function over a semi-
algebraic set is considered. Section 7.2 contains preliminaries over moment sequences and polynomials.

7.2 The moment problem and sums of squares of polynomials

The moment problem. Let (S,+) be a commutative semigroup and let S∗ denote the set of nonzero
mappings f : S −→ R that are multiplicative, i.e., f(α + β) = f(α)f(β) for all α, β ∈ S. Given a
sequence y = (yα)α∈S indexed by S, its moment matrix M(y) is the square matrix indexed by S whose
(α, β)-th entry is yα+β for α, β ∈ S.

When S is the semigroup P(V ) with the union as semigroup operation, we find the moment matrix
MV (y) already introduced earlier in (5). When S is the semigroup (Zn+,+), we use the notation MZ(y)
for the moment matrix of y ∈ RZn+ and MZ

t (y) for its principal submatrix indexed by all sequences
α ∈ Zn+ with |α| ≤ t (considered above).

Following [BCJ79, BCR84], a sequence y ∈ RS is said to be positive semidefinite if every finite
principal submatrix of its moment matrix M(y) is positive semidefinite and, given a subset F ⊆ S∗, y

19



is called a F -moment sequence if there exists a positive Radon measure µ on S∗ supported by F such
that

yα =
∫
S∗

fαdµ(f) for all α ∈ S. (42)

Given two sequences x, y ∈ RS, definition (6) extends as

(x ∗ y)α :=
∑
γ∈S

xγyα+γ for α ∈ S.

The moment problem is the problem of characterizing moment sequences. It has been much studied
in the literature especially for the semigroup S = Zn+, in which case S∗ = Rn and the moment condition
(42) reads as relation (35); see [Fu83, BCR84] for a survey.

Obviously, every F -moment sequence should be positive semidefinite. Much research has been
done for characterizing moment sequences for various closed sets F . For instance, for n = 1 and
F = R, every positive semidefinite sequence is a moment sequence, a result of Hamburger in 1920.
For n = 1 and F = R+, a sequence y = (yi)i≥0 is a F -moment sequence if and only if both y and
e1 ∗ y = (yi+1)i≥0 are positive semidefinite, a result shown by Stieltjes in 1894. When F is a compact
semi-algebraic set in Rn, i.e.,

F = {x ∈ Rn | g`(x) ≥ 0 for ` = 1, . . . ,m} (43)

where g` are polynomials, Schmüdgen [Sc91] shows that y is a F -moment sequence if and only if y
and g ∗ y are positive semidefinite for any product g = gi1 . . . gik of distinct polynomials among g`
(` = 1, . . . ,m).

Reformulating Corollary 3 as a moment result in a semigroup. In fact, the result from
Corollary 3 can also be viewed as a result about moments, if we consider sequences indexed by the
semigroup S := P(V ) (with the union as semigroup operation). Then, S∗ = {ζS | S ∈ P(V )}. Hence,
a sequence y ∈ RP(V ) is a moment sequence if and only if y ∈ CP(V ) which, by Corollary 3, is equivalent
to y being a positive definite sequence. (Noting that P(V ) is an idempotent semigroup, the result
from Corollary 3 in the unconstrained case when J = P(V ) also follows from Proposition 4.17 in
[BCR84].)

Let F = {x ∈ {0, 1}n | g`(x) ≥ 0 ∀l = 1, . . . ,m}, where the g`’s are polynomials in which each
variable occurs with degree ≤ 1, and let J be defined as in (13). Then, y is a F -moment sequence
(meaning that the measure µ is nonzero only at ζS with χS ∈ F , i.e., S ∈ J ) if and only if y ∈ CJ
which, by Corollary 3, is equivalent to the sequences y and g` ∗ y (` = 1, . . . ,m) being positive
semidefinite. Therefore, this gives a ‘discrete’ analogue of the above mentioned result of Schmüdgen.

Representations of nonnegative polynomials as sums of squares. Let P+(F ) denote the set
of polynomials p(x) =

∑
α pαx

α that are nonnegative on F ; that is, p(x) ≥ 0 for all x ∈ F . One
of the basic results about moments, due to Haviland (1935), is that, given a closed subset F in Rn,
y = (yα)α∈Zn+ is a F -moment sequence if and only if yTp ≥ 0 for any p = (pα)α∈Zn+ in P+(F ).

Since a linear functional f on the set R[x1, . . . , xn] of polynomials is completely determined by
the sequence (f(xα))α∈Zn+ , the above result says that the set of F -moment sequences can be identified
with the set of linear functionals that are nonnegative on P+(F ).

Let Σ2 denote the convex cone generated by all squares of polynomials in R[x1, . . . , xn]. One can
easily verify that a linear functional f on R[x1, . . . , xn] is nonnegative on Σ2 if and only if the sequence
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(f(xα))α∈Zn+ is positive semidefinite. The obvious inclusion

Σ2 ⊆ P+(F )

corresponds by duality to the fact that every F -moment sequence is positive semidefinite. For n =
1, F = R, it is well known that every nonnegative polynomial on R can be represented as the
sum of squares of two polynomials, which gives again the result of Hamburger. For n ≥ 2, not
every nongegative polynomial can be expressed as a sum of squares of polynomials; this problem of
representing polynomials as sums of squares goes back to Hilbert’s 17th problem.

Let us reformulate the result of Schmüdgen in terms of polynomials. Let F be as in (43) and let
Σ2(g1, . . . , gm) :=

∑
I⊆[1,m]

(
∏
i∈I

gi)Σ2 denote the set of all polynomials of the form
∑
I⊆[1,m] pI ·

∏
i∈I gi,

where all pI belong to Σ2. One can easily verify that a linear functional f on R[x1, . . . , xn] is nonneg-
ative on Σ2(g1, . . . , gm) if and only if the associated sequence y := (f(xα))α is positive semidefinite
as well as the sequences (

∏
i∈I gi) ∗ y for all I ⊆ [1,m]. Thus what Schmüdgen shows is that both

sets P+(F ) and Σ2(g1, . . . , gm) have the same sets of nonnegative linear functionals. From this follows
that every polynomial p which is positive on F belongs to Σ2(g1, . . . , gm). Putinar [Pu93] shows the
following stronger result.

Theorem 15. Let F be a compact semi-algebraic set as in (43). Assume that there exists a polynomial
u ∈ Σ2 + g1Σ2 + . . . + gmΣ2 for which the set {x ∈ Rn | u(x) ≥ 0} is compact. If p is a polynomial
positive on F , then p ∈ Σ2 + g1Σ2 + . . . gmΣ2.

As we see below, this result plays a central role for evaluating asymptotically polynomial programs.

7.3 Lasserre’s lift and project method for polynomial programs

Successive relaxations for polynomial programs. Let F be a semi-algebraic set as in (43).
Assume that the assumptions from Theorem 15 hold: F is compact and the set {x ∈ Rn | u(x) ≥ 0}
is compact for some polynomial u ∈ Σ2

1(g) := Σ2 + g1Σ2 + . . . gmΣ2. Suppose we want to solve the
problem

p∗ := min g0(x) subject to x ∈ F (44)

where g0 is a polynomial of degree w0 which can be assumed to satisfy g0(0) = 0. Let w` denote the
degree of g` and v` :=

⌈w`
2

⌉
, v := max`=1,...,m v`.

Lasserre [Las01a] constructs successive relaxations for problem (44) that converge asymptotically to
its optimum solution. His construction is based on the following observation: For x ∈ Rn, let yx ∈ RZn+
with α-th entry xα. Then, MZ(yx) = yx(yx)T � 0 and MZ(g ∗ yx) = g(x) · yx(yx)T � 0 if g(x) ≥ 0.
This leads to the following semidefinite relaxation of problem (44) for any t ≥ max(v0 − 1, v − 1):

p∗t := min
∑
α

(g0)αyα

s.t. MZ
t+1(y) � 0

MZ
t−v`+1(g` ∗ y) � 0 (` = 1, . . . ,m)

y0 = 1

(45)
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The dual SDP program of (45) reads:

ρ∗t := max −X(0, 0) −
m∑
`=1

g`(0)Z`(0, 0)

s.t. 〈X,Bγ〉+
m∑
`=1

〈Z`, C`
γ〉 = (g0)γ (γ 6= 0)

X,Z` � 0 (` = 1, . . . ,m),

(46)

where MZ
t+1(y) =

∑
γ yγBγ (as in (37), with d = t + 1) and MZ

t−v`+1(g` ∗ y) =
∑
γ yγC

`
γ , with C`

γ =∑
α,β∈St−v`+1,δ

α+β+δ=γ

(g`)δEα,β. We have:

ρ∗t ≤ p∗t ≤ p∗.

For x ∈ F , the sequence yx is obviously an F -moment sequence (of the Dirac measure at x) and,
thus, the primal program (45) states necessary conditions for y to be a moment sequence. The dual
program (46) is related to representations of positive polynomials on F . Namely, if X,Z` are feasible
for (46) with objective value ρ, then one can verify that the polynomial g0(x) − ρ belongs to the set
Σ2

1(g) = Σ2 +
∑m
`=1 g`Σ2. For this, write

X =
r0∑
j=1

qjq
T
j , Z` =

r∑̀
j=1

q`jq
T
`j

for some vectors qj, q`j . Then, the polynomial g0(x)− ρ is equal to∑
γ 6=0

(g0)γxγ + X(0, 0) +
∑
`

g`(0)Z`(0, 0) = 〈X,
∑
γ

xγBγ〉+
∑
`

〈Z`,
∑
γ

xγC`
γ〉

= 〈X,MZ
t+1(y

x)〉+
∑
`

〈Z`,MZ
t−v`+1(g` ∗ yx)〉 =

r0∑
j=1

(qj(x))2 +
∑
`

g`(x) ·

 r∑̀
j=1

(q`j(x))2

 ,

using the facts that 〈X,MZ
t+1(y

x)〉 =
∑
j qTj MZ(yx)qj =

∑
j

∑
α,β qj(α)qj(β)xα+β =

∑
j(qj(x))2 and

〈Z`,MZ
t−v`+1(g` ∗ yx)〉 =

∑
j g`(x)(q`j(x))2. In particular, the polynomial g0(x)− ρ∗t belongs to Σ2

1(g).
Conversely, given any ε > 0, the polynomial g0(x) − p∗ + ε is positive on F which, by Theorem

15, implies that it belongs to Σ2
1(g). The above arguments can be reversed to construct from a

decomposition of g0(x) − p∗ + ε in Σ2
1(g) a feasible solution X,Z` to (46) for some t with objective

value p∗ − ε, which shows that ρ∗t ≥ p∗ − ε.
Therefore, for any ε > 0, there exists t for which p∗ − ε ≤ ρ∗t ≤ p∗t ≤ p∗. This shows that

limt−→∞ p∗t = p∗ and

p∗ = ρ∗t for some t⇐⇒ g0(x)− p∗ ∈ Σ2 +
m∑
`=1

g`Σ2.

Moreover,
conv(F ) =

⋂
t≥v−1

Qt(F )

where Qt(F ) is defined as the projection of the feasible set of the program (45) intersected with the
hyperlane y0 = 1, on the subspace Rn indexed by the sequences α ∈ Zn+ with |α| = 1.
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Relation with the previously defined Lasserre relaxations for 0−1 programs. Consider now
the case when F is the set of 0− 1 solutions of a polynomial system; that is,

F = {x ∈ Rn | g`(x) ≥ 0 (` = 1, . . . ,m), hi(x) = 0 (i = 1, . . . , n)} (47)

setting hi(x) := xi − x2
i for i = 1, . . . , n. Then, one can assume without loss of generality that

each g` has degree at most 1 in every variable and the assumptions from Theorem 15 hold (with
u(x) :=

∑n
i=1 hi(x)). Using a result of Curto and Fialkow [CF00] about rank extensions of moment

matrices, Lasserre [Las01b] shows finite convergence of the successive relaxations Qt(F ) to conv(F );
namely,

Qn+v−1(F ) = conv(F ). (48)

The set
K := {x ∈ [0, 1]n | g`(x) ≥ 0 (` = 1, . . . ,m)} (49)

is a natural relaxation of F . As we see in Proposition 16 below, the relaxation Qt(F ) coincides with the
relaxation Qt(K) introduced earlier in Section 3.3. Proposition 16 shows in fact the following results:
Our presentation in Section 3.3 of the Lasserre relaxations in terms of moment matrices indexed by
subsets is equivalent to the original definition of Lasserre (in terms of moment matrices indexed by
integer sequences); as an application, this gives an elementary proof for the convergence result from
relation (48).

Proposition 16. Let F and K be defined by (47), (49) respectively. Then, Qt(F ) = Qt(K) for any
t ≥ v − 1 and Qt(F ) = Qn+v−1(F ) for any t ≥ n + v − 1.

Proof. For α ∈ Zn+, define α ∈ {0, 1}n by αi := 1 if and only if αi ≥ 2. Then, the condition
MZ
t (hi ∗ y) = 0 means that

yα = yα (50)

for any α with |α| ≤ 2t. From this follows that the α-th column of the moment matrix MZ(y) is
identical to its α-th column; similarly for the matrices MZ(g` ∗ y). A first consequence is that, for
t ≥ n,

MZ
t (y) � 0⇐⇒MZ

n (y) � 0, and MZ
t (g` ∗ y) � 0⇐⇒MZ

n (g` ∗ y) � 0;

this shows equality Qt(F ) = Qn+v−1(F ) for t ≥ n + v − 1. Let z ∈ RP(V ) with I-th entry zI := yα
with αi = 1 if i ∈ I and αi = 0 otherwise. Then, Mt(z) is a principal submatrix of MZ

t (y) and another
consequence of (50) is that

Mt(z) � 0⇐⇒MZ
t (y) � 0;

similarly, Mt(g` ∗ z) � 0 ⇐⇒ MZ
t (g` ∗ y) � 0. This shows equality Qt(K) = Qt(F ) for t ≥ v − 1.

The quadratic case. Consider finally the case when F is a semi-algebraic set defined by a set of
quadratic constraints; that is, each g` is of the form g`(x) = xTQ`x + 2qT` x + γ` (Q` symmetric n× n

matrix, q` ∈ Rn, γ` ∈ R). For ` = 1, . . . ,m, set P` :=
(

γ` qT`
q` Q`

)
. Then, g`(x) = 〈P`,

(
1 xT

x xxT

)
〉.

Therefore, the following set F̂ is a natural semidefinite relaxation of F :

F̂ := {x ∈ Rn | (1 x) = Y e0 for some Y � 0 with 〈P`, Y 〉 ≥ 0 for ` = 1, . . . ,m} (51)
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(considered, e.g., in [FK97]). In fact, the set F̂ coincides with the first Lasserre relaxation Q0(F ).

Proposition 17. Q0(F ) = F̂ .

Proof. By definition, x ∈ Rn belongs to Q0(F ) if there exists y = (yα)|α|≤2 satisfying y0 = 1, yei = xi
(i = 1, . . . , n) (e1, . . . , en denoting the standard unit vectors in Rn), MZ

1 (y) � 0 and g` ∗ y(0) ≥ 0
(` = 1, . . . ,m). The equality Q0(F ) = F̂ follows from the following fact: Given a symmetric matrix
Y = (Yij)ni,j=0, define y = (yα)|α|≤2 by y0 := Y00, yei := Y0i, yei+ej := Yij (i, j = 1, . . . , n); then,
M1(y) = Y and g` ∗ y(0) = 〈P`, Y 〉.
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